Finger Motion Decoding Using EMG Signals Corresponding Various Arm Postures

نویسندگان

  • Kyung-Jin You
  • Ki-Won Rhee
  • Hyun-Chool Shin
چکیده

We provide a novel method to infer finger flexing motions using a four-channel surface electromyogram (EMG). Surface EMG signals can be recorded from the human body non-invasively and easily. Surface EMG signals in this study were obtained from four channel electrodes placed around the forearm. The motions consist of the flexion of five single fingers (thumb, index finger, middle finger, ring finger, and little finger) and three multi.finger motions. The maximum likelihood estimation was used to infer the finger motions. Experimental results have shown that this method can successfully infer the finger flexing motions. The average accuracy was as high as 97.75%. In addition, we examined the influence of inference accuracies with the various arm postures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model

Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...

متن کامل

EMG-Based Position and Force Estimates in Coupled Human-Robot Systems: Towards EMG-Controlled Exoskeletons

This paper presents a methodology for the control of robots, in position and force, using electromyographic (EMG) signals recorded from muscles of the shoulder and elbow. A switching model is used for decoding muscular activity to both joint angles and force exerted from the human upper limb to the environment. The proposed method is able to estimate those variables in cases where no force is e...

متن کامل

Myoelectric Signal Based Finger Motion Discrimination by using Wavelet’s and Pattern Recognisition

This paper details a strategy of discriminating finger Gestures using surface electromyography (EMG) signals, which could be applied to controlling the advanced multi-fingered myoelectric prosthesis for hand amputees. Finger motions discrimination is the key problem in this study. The EMG signal classification system was established based on the surface EMG signals from the subject’s forearm. F...

متن کامل

Prosthetic Hand Control

This paper presents a five-fingered underactuated prosthetic hand controlled by surface electromyographic (EMG) signals. The prosthetic hand control part is based on an EMG motion pattern classifier which combines variable learning rate (VLR) based neural network with parametric Autoregressive (AR) model and wavelet transform. This motion pattern classifier can successfully identify flexion and...

متن کامل

Artificial Human Arm Driven by EMG Signal

Robot arms are versatile tools found in a wide range of applications. While the user moves his arm, (EMG) activity is recorded from selected muscles, using surface EMG electrodes. By a decoding procedure the muscular activity is transformed to kinematic variables that are used to control the robot arm. EMG signals have been used as control signals for robotics devices in the past. EMG signals, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2010